Entropy of Coherent States of Optical Fields
- Authors: Eskanderi M.M1, Kilin S.Y.1, Khoroshko D.B1
- 
							Affiliations: 
							- Institute of Physics, National Academy of Sciences of Belarus
 
- Issue: Vol 163, No 4 (2023)
- Pages: 467-479
- Section: Articles
- URL: https://rjpbr.com/0044-4510/article/view/653525
- DOI: https://doi.org/10.31857/S004445102304003X
- EDN: https://elibrary.ru/LFDZSY
- ID: 653525
Cite item
Abstract
We consider statistical mixtures of two and three arbitrary coherent states that are the states of a data carrier in an optical communication channel. The eigenvalues and eigenvectors of the corresponding density operators are obtained in analytic form. For this purpose, an original parameterization of triangles on the complex phase plane is introduced. Analytic expressions are obtained for the von Neumann entropy of mixtures of two and three arbitrary coherent states, and its maximal value for a given average number of photons is calculated. It is found that the use of three coherent states for a given average number of photons ensures a larger capacity of an optical communication channel as compared to two states.
About the authors
M. M Eskanderi
Institute of Physics, National Academy of Sciences of Belarus
														Email: dhoroshko@yahoo.com
				                					                																			                												                								220072, Minsk, Belarus						
S. Ya Kilin
Institute of Physics, National Academy of Sciences of Belarus
														Email: dhoroshko@yahoo.com
				                					                																			                												                								220072, Minsk, Belarus						
D. B Khoroshko
Institute of Physics, National Academy of Sciences of Belarus
							Author for correspondence.
							Email: dhoroshko@yahoo.com
				                					                																			                												                								220072, Minsk, Belarus						
References
- С. Я. Килин, Квантовая оптика. Поля и их детектирование, Едиториал УРСС, Москва (2003).
- В. А. Фок, Начала квантовой механики, Наука, Москва (1976).
- С. Я. Килин, УФН 169, 507 (1999).
- К. Хелстром, Квантовая теория проверки гипотез и оценивания, Мир, Москва (1979).
- Дж. Прокис, Цифровая связь, Радио и связь, Москва (2000).
- T. Muciaccia, F. Gargano, and V. M. N. Passaro, Photonics 1, 323 (2014).
- I. A. Burenkov, O. V. Tikhonova, S. V. Polyakov, Optica 5, 227 (2018).
- I. B. Djordjevic, Advanced Coding for Optical Communications, in Optical Fiber Telecommunications (Sixth Edition), ed. by I. P. Kaminow, T. Li, and A. E. Willner, Academic Press, Boston (2013).
- I. Khan, D. Elser, T. Dirmeier et al., Phil. Trans. Roy. Soc. A 375, 20160235 (2017).
- Квантовая криптография: идеи и практика, под ред. С. Я. Килина, Д. Б. Хорошко, А. П. Низовцева, Белорусская наука, Минск (2007).
- D. Sych and G. Leuchs, New J. Phys. 12, 053019 (2010).
- Д. Б. Хорошко, Д. И. Пустоход, С. Я. Килин, Опт. и спектр. 112, 373 (2012).
- B. Schumacher, Phys. Rev. A 51, 2738 (1995).
- S. Ya. Kilin, Progr. Opt. 42, 3 (2001).
- A. Furusawa, J. L. Sørensen, S. L. Braunstein et al., Science 282, 706 (1998).
- D. B. Horoshko and S. Ya. Kilin, Phys. Rev. A 61, 032304 (2000).
- J. H. Shapiro, G. Saplacoglu, S.-T. Ho et al., J. Opt. Soc. Amer. B 4, 1604 (1987).
- A. V. Masalov, A. A. Putilin, and M. V. Vasilyev, J. Mod. Opt. 41, 1941 (1994).
- Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 106, 1278 (1994).
- I. V. Dudinets and V.I. Man'ko, J.Russ. Laser. Res. 36, 251 (2015).
- K. Br'adler and C. Weedbrook, Phys. Rev. A 97, 022310 (2018).
- А. С. Холево, Пробл. перед. инф. 9, 177 (1973).
- R. J. Glauber, Phys. Rev. 131, 2766 (1963).
- C. E. Shannon, Bell System Techn. J. 27, 379 (1948).
- V.V. Dodonov, I.A. Malkin and V.I. Man'ko, Physica 72, 597 (1974).
- S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons, Oxford Univ. Press (2006).
- D. B. Horoshko and S. Ya. Kilin, J. Mod. Opt. 44, 2043 (1997).
- D. B. Horoshko, S. Ya. Kilin, Opt. Express 2, 347 (1998).
- Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 117, 844 (2000).
- R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (2013).
- R. Deaux, Introduction to the Geometry of Complex Numbers, Dover Publ. (2008).
- D. B. Horoshko, S. De Bi'evre, M. I. Kolobov et al., Phys. Rev. A 93, 062323 (2016).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					