Изменение эритроцитов и продуктов их деградации под действием SARS-CoV-2
- Авторы: Голубева М.Г.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 144, № 2 (2024)
- Страницы: 178-190
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 10.09.2024
- URL: https://rjpbr.com/0042-1324/article/view/653207
- DOI: https://doi.org/10.31857/S0042132424020055
- EDN: https://elibrary.ru/RHQIEV
- ID: 653207
Цитировать
Полный текст
Аннотация
Представлены современные отечественные и зарубежные литературные данные о влиянии SARS-CoV-2 на эритроциты при COVID-19 и о влиянии образовавшихся продуктов деградации эритроцитов на организм. Подробно анализируются механизмы детоксикации этих продуктов и возможность рассматривать их в качестве биомаркеров этого тяжелейшего заболевания, а также терапевтических мишеней для борьбы с ним.
Ключевые слова
Полный текст

Об авторах
М. Г. Голубева
Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: Mgolubeva46@mail.ru
биологический факультет
Россия, МоскваСписок литературы
- Беляков Н.А., Рассохин В.В., Ястребова Е.Б. Лекция: Коронавирусная инфекция COVID-19. Ч. 1. Природа вируса, патогенез, клинические проявления. СПб.: ПСПбГМУ им. И.П. Павлова, 2020. С. 1–18.
- Гайнуллина Д.К., Кирюхина О.О., Тарасова О.С. Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия // Успехи физиол. наук. 2013. № 4. С. 88–102.
- Голубева М.Г. Осмотическая резистентность эритроцитов, методы определения и коррекции, значение при различных патологиях // Успехи соврем. биол. 2019. Т. 139 (5). С. 446–456.
- Голубева М.Г. Роль Р-селектина в развитии нарушений гемостаза при COVID-19 // Успехи соврем. биол. 2022. Т. 142 (2). С. 175–183.
- Голубева М.Г. Роль гаптоглобина в защите организма от токсического действия внеклеточного гемоглобина // Успехи соврем. биол. 2023. Т. 143 (2). С. 114–122.
- Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции // Инфек. иммун. 2020. Т. 10 (2). С. 259–268.
- Abbas Y.M., Toye A.M., Rubinstein J.L., Reithmeier R.A.F. Band 3 function and dysfunction in a structural context // Curr. Opin. Hematol. 2018. V. 25 (3). P. 163–170.
- Abdelhafez M. Protective and therapeutic potentials of HDL and ApoA1 in COVID-19 elderly and chronic illness patients // Bull. Natl. Res. Cent. 2022. V. 46. P. 222.
- Abrahams L. COVID-19: acquired acute porphyria hypothesis. 2020. https://doi.org/10.31219/osf.io/4wkfycc
- Adamzik M., Hamburger Т., Petrat F. et al. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome // Crit. Care. 2012. V. 16 (4). P. R125.
- Akhter N., Ahmad S., Alzahrani F.A. et al. Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24 (19). P. 10267–10278.
- Algassim A.A., Elghazaly A.A., Alnahdi A.S. et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection // Ann. Hematol. 2021. V. 100. P. 37–43.
- Alipoor S., Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor // Mol. Biol. Rep. 2022. V. 49 (11). P. 10715–10727.
- Alipoor S.D., Mortaz E., Jamaati H. et al. COVID-19: molecular and cellular response // Front. Cell. Infect. Microbiol. 2021a. V. 11. P. 563085.
- Alipoor S.D., Mortaz E., Varahram M. et al. The immunopathogenesis of neuroinvasive lesions of SARS-CoV-2 infection in COVID-19 patients // Front. Neurol. 2021b. V. 12. P. 697079.
- Al-Kuraishy H.M., Al-Gareeb A., Kaushik A. et al. Hemolytic anemia in COVID-19 // Ann. Hematol. 2022. V. 101 (9). P. 1887–1895.
- Aoki T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins // Membranes. 2017. V. 7 (4). P. 56.
- Ascenzi P., Bocedi A., Visca P. et al. Hemoglobin and heme scavenging // IUBMB Life. 2005. V. 57 (11). Р. 749–759.
- Ashouri R., Fangman M., Burris A. et al. Critical role hemopexin mediated cytoprotection in the pathophysiology of sickle cell disease // Int. J. Mol. Sci. 2021. V. 22 (12). P. 6408.
- Aydemir D., Dağlıoğlu G., Candevir A. et al. COVID-19 may enhance risk of thrombosis and hemolysis in the G6PD deficient patients // Nucl. Nucleot. Nucl. Acids. 2021. V. 40. P. 505–517.
- Böning D., Kuebler W., Bloch W. The oxygen dissociation curve of blood in COVID-19 // Am. J. Physiol. Lung Cell. Mol. Physiol. 2021. V. 321. P. L349–L357.
- Brzeszcznska J., Gwozdzinski K. Nitric oxide induced oxidative changes in erythrocyte membrane components // Cell Biol. Int. 2008. V. 32 (1). P. 114−120.
- Cameron K., Rozano L., Falasca M., Mancera R.L. Does the SARS-CoV-2 spike protein receptor binding domain interact effectively with the DPP4 (CD26) receptor? A molecular docking study // Int. J. Mol. Sci. 2021. V. 22 (13). P. 7001.
- Cantuti-Castelvetri L., Ojha R., Pedro L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. V. 370 (6518). P. 856–860.
- Carbajo-Lozoya J., Ma-Lauer Y., Malešević M. et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir // Virus Res. 2014. V. 184. P. 44–53.
- Сhen K., Popel A.S. Nitric oxide production pathways in erythrocytes and plasma // Biorheology. 2009. V. 46 (2). P. 107−119.
- Chen L., Mehta J. Evidence for the presence of L-arginine–nitric oxide pathway in human red blood cells: relevance in the effect of red blood cells on platelet function // J. Cardiovasc. Pharmacol. 1998. V. 32 (1). P. 57−61.
- Chen Z., Mi L., Xu J. et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus // J. Infect. Dis. 2005. V. 191. P. 755–760.
- Cosic I., Cosic D., Loncarevic I. RRM prediction of erythrocyte Band3 protein as alternative receptor for SARS-CoV-2 virus // Appl. Sci. 2020. V. 10 (11). P. 4053.
- Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. V. 370 (6518). P. 861–865.
- Deuel J., Schaer C., Boretti F.S. et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering heme toxicity response // Cell Death Dis. 2016. V. 7 (1). P. e2064.
- Effenberger-Neidnicht K., Hartmann M. Mechanisms of hemolysis during sepsis // Inflammation. 2018. V. 41 (5). P. 1569–1581.
- Etzerodt A., Moestrup S.K. CD163 and inflammation: biological, diagnostic and therapeutic aspects // Antioxid. Redox Signal. 2013. V. 18 (17). P. 2352– 2363.
- Faghihi H. CD147 as an alternative binding site for the spike protein on the surface of SARS-CoV-2 // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24. P. 11992–11994.
- Foy B.H., Carlson J.C.T., Reinertsen E. et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection // JAMA Netw. Open. 2020. V. 3. P. e2022058.
- Griffiths S., Clark J., Adamides A.A., Ziogas J. The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature // Neurosurg. Rev. 2020. V. 43 (5). P. 1273–1288.
- Guo H.-F., Kooi C.W.V. Neuropilin function as an essential cell surface receptor // J. Biol. Chem. 2015. V. 290 (49). P. 29120–29126.
- Hamburger T., Broecker-Preuss M., Hartmann M. et al. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats // J. Surg. Res. 2013. V. 183. P. e7–e21.
- Hartmann M., De Groot H. Cell-free hemoglobin: a new player in sepsis pathophysiology // Crit. Care Med. 2013. V. 41 (8). P. e186–e189.
- Helal M.A., Shouman S., Abdelwaly A. et al. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia // J. Biomol. Struct. Dyn. 2020. V. 16. P. 1109–1119.
- Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. V. 181 (2). P. 271–280.
- Hvidberg V., Manieki M.B., Jacobsen C. et al. Identification of the receptor scavenging hemopexin–heme complexes // Blood. 2005. V. 106 (7). P. 2572–2579.
- Janz D.R., Ware L.B. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS // J. Intensive Care. 2015. V. 3. P. 20.
- Janz D.R., Bastarache J.A., Peterson J.F. et al. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study // Crit. Care Med. 2013. V. 41. P. 784–790.
- Jobe A., Vijayan R. Neuropilins: C-end rule peptides and their association with nociception and COVID-19 // Comput. Struct. Biotechnol. J. 2021. V. 19. P. 1889–1895.
- Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors – lessons from available evidence and insights into COVID-19 // Hypertens. Res. 2020. V. 43 (7). P. 648–654.
- Kichloo A., Dettloff K., Aljadah M. et al. COVID-19 and hypercoagulability: a review // Clin. Appl. Thromb. Hemost. 2020. V. 26. P. 1076029620962853.
- Kirtipal N., Kumar S., Dubey S.K. et al. Understanding on the possible routes for SARS-CoV-2 invasion via ACE2 in the host linked with multiple organs damage // Infect. Genet. Evol. 2022. V. 99. P. 105254.
- Kowal K., Silver R., Sławińska E. et al. CD163 and its role in inflammation // Folia Histochem. Cytobiol. 2011. V. 49 (3). P. 365–374.
- Kumar S., Thambiraja T.S., Karuppanan K., Subramaniam G. Omicron and Delta variant of SARS-CoV-2: a comparative computational study of spike protein // J. Med. Virol. 2022. V. 94. P. 1641–1649.
- Lansink M.O., Görlinger K., Hartmann M. et al. Melatonin does not affect disseminated intravascular coagulation but diminishes decreases in platelet count during subacute endotoxaemia in rats // Thromb. Res. 2016. V. 139. P. 38–43.
- Larsen R., Gozzelino R., Jeney V. et al. A central role for free heme in the pathogenesis of severe sepsis // Sci. Transl. Med. 2010. V. 2. P. 51ra71.
- Lecerf M., Scheel T., Pashov A.D. et al. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity // J. Biol. Chem. 2015. V. 290. P. 5203–5213.
- Li W., Moore M.J., Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus // Nature. 2003. V. 426 (6965). P. 450–454.
- Lippi G., Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019 // Hematol. Transfus. Cell Ther. 2020. V. 42. P. 116–117.
- Loh D. The potential of melatonin in the prevention and attenuation of oxidative hemolysis and myocardial injury from CD147 SARS-CoV-2 spike protein receptor binding // Melatonin Res. 2020. V. 3 (3). P. 380–416.
- Lu R., Zhao X., Li J. et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Lancet. 2020. V. 395. P. 565–574.
- Luo C., Luo H., Zheng S. et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A // Biochem. Biophys. Res. Commun. 2004. V. 321. P. 557–565.
- Mayi B.S., Leibowitz J.A., Woods A.T. et al. The role of neuropilin-1 in COVID-19 // PLoS Pathog. 2021. V. 17. P. e1009153.
- Mendonça M., Cruss K., Pinheiro D. et al. Dysregulation in erythrocyte dynamics caused SARS-CoV-2 infection: possible role in shuffling the homeostatic puzzle during COVID-19 // Hematol. Transfus. Cell Ther. 2022. V. 44 (2). P. 235–245.
- Mlcochova P., Kemp S.A., Dhar M.S. et al. SARS-CoV-2 B.1.617.2 Delta variants replication and immune evasion // Nature. 2021. V. 599. P. 114–119.
- Moreno-Torres V., Sánchez-Chica E., Castejón R. et al. Red blood cell distribution width as a marker of hyperinflammation and mortality in COVID-19 // Ann. Palliat. Med. 2022. V. 11. P. 2609–2621.
- Nieto-Torres J.L., Verdiá-Báguena C., Jimenez-Guardeño J.M. et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome // Virology. 2015. V. 485. P. 330–339.
- Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19 // J. Pharmacol. Sci. 2022. V. 150 (1). P. 9–20.
- Osti N., Ceolan J., Piccoli P. et al. Acute hemolysis by cold antibody during SARS-CoV-2 infection in a patient with Evans syndrome: a case report and literature review // Blood Transfus. 2022. V. 20 (2). P. 168–172.
- Ousaka D., Nishibori M. A new approach to combat the sepsis including COVID-19 by accelerating detoxification of hemolysis-related DAMPs // Nihon Yakurigaku zasshi. 2022a. V. 157 (6). P. 422–425.
- Ousaka D., Nashibori M. Is hemolysis a novel therapeutic target in COVID-19? // Front. Immunol. 2022b. V. 13. P. 956671.
- Papandopoulos C., Spourita E., Tentes I. et al. Red blood cell malfunction in COVID-19 molecular mechanisms and therapeutic targets // Viral Immunol. 2022. V. 35 (10). P. 649–652.
- Pennings G.J., Kritharides L. CD147 in cardiovascular disease and thrombosis // Semin. Thromb. Hemost. 2014. V. 40. P. 747–755.
- Pia L., Rowland-Jones S. Omicron entry route // Nat. Rev. Immunol. 2022. V. 22 (3). P. 144.
- Pita Zapata E., Sarmiento Penide A., Bautista Guillén B. Massive intravascular hemolysis secondary to sepsis due to Clostridium perfingens // Rev. Esp. Anesthesiol. Reanim. 2010. V. 57 (3). P. 314–316.
- Pushkarsky T., Zybarth D., Dubrovsky L. et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A // PNAS USA. 2001. V. 98 (11). P. 6360–6365.
- Rapozzi V., Juarranz A., Habib A. et al. Is haem the real target of COVID–19? // Photodiagn. Photodyn. Ther. 2021. V. 35. P. 102381.
- Redaelli S., Magliocca A., Malhotra R. et al. Nitric oxide: clinical applications in critically ill patients // Nitric Oxide. 2022. V. 121. P. 20–33.
- Reiter C.D., Wang X., Tanus-Santos J.E. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease // Nat. Med. 2002. V. 8 (12). P. 1383–1389.
- Roy S., Bag A.K., Singh R.K. et al. Multifaceted role of neurothelin’s in the immune system: potential targets for immunotherapy // Front. Immunol. 2017. V. 8. P. 1228.
- Sahu K.K., Borogovac A., Cerny J. COVID‐19 related immune hemolysis and thrombocytopenia // J. Med. Virol. 2021. V. 93 (2). P. 1164–1176.
- Saphire A., Bobardt M.D., Gallay P.A. Human immunodeficiency virus type 1 hijacks host cyclophilin A for its attachment to target cells // Immunol. Res. 2000. V. 21. P. 211–217.
- Schaer C.A., Deuel J.W., Bittermann A.G. et al. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage // Cell Death Differ. 2013. V. 20 (11). P. 1569–1579.
- Scialo F., Daniele A., Amato F. et al. ACE2: the major cell entry receptor for SARS-CoV-2 // Lung. 2020. V. 198. P. 867–877.
- Shver C.M., Upchurch C.P., Janz D.R. et al. Cell-free hemoglobin: a novel mediator of acute lung injury // Am. J. Physiol. Lung Cell. Mol. Physiol. 2016. V. 310. P. L532–L541.
- Su W.-L., Lin C.-P., Hang H.-C. et al. Desaturation and heme elevation during COVID-19 infection: a potential prognostic factor of heme oxygenase-1 // J. Microbiol. Immunol. Infect. 2021. V. 54. P. 113–116.
- Tai W., He L., Zhang X. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine // Cell. Mol. Immunol. 2020. V. 17. P. 613–620.
- Thomas T., Stefanoni D., Dzieciatkowska M. et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients // J. Proteome Res. 2020. V. 19. P. 4455–4469.
- Vallelian F., Buehler P., Schaer D. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics // Blood. 2022. V. 140 (17). P. 1837–1844.
- van Avondt K., Nur E., Zeerleder S. Mechanisms of haemolysis-induced kidney injury // Nat. Rev. Nephrol. 2019. V. 15 (11). P. 671–692.
- Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26 // Emerg. Microbes Infect. 2020. V. 9 (1). P. 601–604.
- Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection // Eur. J. Intern. Med. 2020. V. 76. P. 14–20.
- Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // JAMA. 2020. V. 323. P. 1061–1069.
- Wang H.-B., Zhang H., Zhang J.-P. et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells // Nat. Commun. 2015. V. 6. P. 6240.
- Wang K., Chen W., Zhang Z. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells // Signal Transduct. Target. Ther. 2020a. V. 5 (1). P. 283.
- Wang K., Chen W., Zhou Y.-S. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein // bioRxiv. 2020b. https://doi.org/10.1101/2020.03.14.988345
- Wang Q., Qi J., Yuan Y. et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 // Cell Host Microbe. 2014. V. 16 (3). P. 328–337.
- Wang R., Shen Q., Li X. et al. Efficacy of inversо isomer of CendR peptide on tumor tissue penetration // Acta Pharm. Sin. B. 2018. V. 8 (5). P. 825–832.
- WHO. 2021. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novelcoronavirus-2019
- Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China // Nature. 2020. V. 579. P. 265–269.
- Yurchenko V., Constant S., Eisenmesser E., Bukrinsky M. Cyclophilin–CD147 interactions: a new target for anti-inflammatory therapeutics // Clin. Exp. Immunol. 2010. V. 160 (3). P. 305–317.
- Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. V. 395. P. 1054–1062.
- Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection // Front. Med. 2020. V. 14 (2). P. 185–192.
Дополнительные файлы
