Патогенез постковидного синдрома. Ключевая роль иммунной системы
- Авторы: Гомазков О.А.1
-
Учреждения:
- Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
- Выпуск: Том 144, № 2 (2024)
- Страницы: 171-177
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 10.09.2024
- URL: https://rjpbr.com/0042-1324/article/view/653206
- DOI: https://doi.org/10.31857/S0042132424020046
- EDN: https://elibrary.ru/RHSTQF
- ID: 653206
Цитировать
Полный текст
Аннотация
При рассмотрении патогенеза COVID-19 и постковидного синдрома на первый план выходят расстройства, связанные с иммунной системой. Комплексы иммунной дисрегуляции, диссонансные реакции врожденной и адаптивной иммунных систем пациента следует считать основными причинами сложной картины поражений. Эти процессы включают клеточное воспаление, расстройство гемоваскулярного гомеостаза, поражения органов. Последовательный анализ этих процессов служит основанием для выбора схем терапевтической стратегии с учетом клинических показателей и персональных особенностей пациентов.
Полный текст

Об авторах
О. А. Гомазков
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Автор, ответственный за переписку.
Email: oleg-gomazkov@yandex.ru
Россия, Москва
Список литературы
- Arish M., Qian W., Narasimhan H., Sun J. COVID-19 immunopathology: from acute diseases to chronic sequelae // J. Med. Virol. 2023. V. 95 (1). P. e28122.
- Arthur J.M., Forrest J.C., Boehme K.W. et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. V. 16. P. e0257016.
- Augustin M., Schommers P., Stecher M. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study // Lancet Reg. Health Eur. 2021. V. 6. P. 100122. https://doi.org/10.1016/j.lanepe.2021.100122
- Bellanti J.A., Green R.E. Immunological reactivity. Expression of efficiency in elimination of foreignness // Lancet. 1971. V. 2. P. 526–529.
- Cervia C., Zurbuchen Y., Taeschler P. et al. Immunoglobulin signature predicts risk of post-acute COVID‐19 syndrome // Nat. Commun. 2022. V. 13 (1). P. 446–458.
- Cevik M., Tate M., Lloyd O. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis // Lancet. Microbe. 2021. V. 2. P. e13–e22.
- Charfeddine S., Amor H.I.J., Jdidi J. et al. Long COVID-19 syndrome: is it related to microcirculation and endothelial dysfunction? // Front. Cardiovasc. Med. 2021. V. 8. P. 745758.
- Cheon I.S., Li C., Son Y.M. et al. Immune signatures underlying post‐acute COVID‐19 lung sequelae // Sci. Immunol. 2021. V. 6 (65). P. eabk1741.
- Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. V. 21. P. 133–146.
- DeOre B.J., Tran K.A., Andrews A.M. et al. SARS-CoV-2 spike protein disrupts blood–brain barrier integrity via RhoA activation // J. Neuroimm. Pharmacol. 2021. V. 16. P. 722–728.
- Dennis A., Wamil M., Alberts J. et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study // BMJ Open. 2021. V. 11 (3). P. e048391.
- Espín E., Yang C., Shannon C.P. et al. Cellular and molecular biomarkers of long COVID: a scoping review // EBioMedicine. 2023. V. 91. P. 104552.
- García-Abellán J., Padilla S., Fernández-González M. et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study // J. Clin. Immunol. 2021. V. 41. P. 1490–1501.
- Glynne P., Tahmasebi N., Gant V., Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines // J. Investig. Med. 2022. V. 70. P. 61–67.
- Heneka M.T., Golenbock D., Latz E. et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease // Alzheimers Res. Ther. 2020. V. 12. P. 69.
- Hosseini A., Hashemi V., Shomali N. et al. Innate and adaptive immune responses against coronavirus // Biomed. Pharmacother. 2020. V. 132. P. 110859.
- Kemp S., Collier D., Datir R. et al. SARS-CoV-2 evolution during treatment of chronic infection // Nature. 2021. V. 592 (7853). P. 277–282.
- Khoshkam Z., Aftabi Y., Stenvinkel P. et al. Recovery scenario and immunity in COVID-19 disease: a new strategy to predict the potential of reinfection // J. Adv. Res. 2021. V. 31. P. 49–60.
- Lam G.Y., Damant R.W., Ferrara G. et al. Characterizing long-COVID brain fog: a retrospective cohort study // J. Neurol. 2023. V. 270 (10). P. 4640–4646.
- Larionova R., Byvaltsev K., Kravtsova O. et al. SARS-CoV-2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases // J. Transl. Autoimmun. 2022. V. 5. P. 100154. https://doi.org/10.1016/j.jtauto.2022.100154
- Lei Y., Zhang J., Schiavon C.R. et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2 // Circ. Res. 2021. V. 128. P. 1323–1326.
- Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis // medRxiv. 2021. V. 11 (1). P. 16144.
- Marques K.C., Quaresma J.A.S., Falcão L.F.M. Cardiovascular autonomic dysfunction in “Long COVID”: pathophysiology, heart rate variability, and inflammatory markers // Front. Cardiovasc. Med. 2023. V. 10. P. 1256512.
- Marx V. Scientists set out to connect the dots on long COVID // Nat. Methods. 2021. V. 18 (5). P. 449– 453.
- Mohandas S., Jagannathan P., Henrich T.J. et al. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC) // eLife. 2023. V. 12. P. e86014.
- Opsteen S., Files J.K., Fram T., Erdmann N. The role of immune activation and antigen persistence in acute and long COVID // J. Investig. Med. 2023. V. 71 (5). P. 545–562.
- Patterson B.K., Francisco E.B., Yogendra R. et al. Persistence of SARS-CoV-2 S1 protein in CD16+ monocytes in post-acute sequelae of COVID-19 (PASC) up to 15 months post-infection // Front. Immunol. 2022. V. 12. P. 746021.
- Phetsouphanh C., Darley D.R., Wilson D.W. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat. Immunol. 2022. V. 23. P. 210–216.
- Plummer A.M., Matos Y.L., Lin H.C. et al. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms // Front. Neurosci. 2023. V. 17. P. 1232480.
- Poon M.M.L., Rybkina K., Kato Y. et al. SARS-CoV-2 infection generates tissue‐localized immunological memory in humans // Sci. Immunol. 2021. V. 6 (65). P. eabl9105.
- Priya S.P., Sunil P.M., Varma S. et al. Direct, indirect, post-infection damages induced by coronavirus in the human body: an overview // Virusdisease. 2022. V. 33 (4). P. 429–444.
- Root-Bernstein R. From co-infections to autoimmune disease via hyperactivated innate immunity: COVID-19 autoimmune coagulopathies, autoimmune myocarditis and multisystem inflammatory syndrome in children // Int. J. Mol. Sci. 2023. V. 24 (3). P. 3001.
- Ryan F.J., Hope C.V., Masavuli M.G. et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection // BMC Med. 2022. V. 20 (1). P. 26.
- Schultheiß C., Willscher E., Paschold L. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19 // Cell Rep. Med. 2022. V. 3 (6). P. 100663.
- Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal // J. Heart Lung Transplant. 2020. V. 39. P. 405–407.
- Swank Z., Senussi Y., Manickas-Hill Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus-2 spike is associated with post-acute coronavirus disease 2019 sequelae // Clin. Infect. Dis. 2023. V. 76 (3). P. e487–e490.
- Troyer Z., Alhusaini N., Tabler C.O. et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies // J. Extracell. Vesicles. 2021. V. 10. P. e12112.
- Theoharides T.C. Could SARS-CoV-2 spike protein be responsible for long-COVID syndrome? // Mol. Neurobiol. 2022. V. 59 (3). P. 1850–1861.
- van Kampen J.J.A., van Vijver D.A.M., Fraaij P.L.A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-19 (COVID-19) // Nat. Commun. 2021. V. 12. P. 267. https://doi.org/10.1038/s41467-020-20568-4
- Wallukat G., Hohberger B., Wenzel K. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms // J. Transl. Autoimmun. 2021. V. 4. P. 100100.
- Wang E.Y., Mao T., Klein J. et al. Diverse functional autoantibodies in patients with COVID-19 // Nature. 2021. V. 595. P. 283–288.
- Wang X., Sanborn M.A., Dai Y., Rehman J. Temporal transcriptomic analysis using TrendCatcher identifies early and persistent neutrophil activation in severe COVID-19 // JCI Insight. 2022. V. 7. P. e157255.
Дополнительные файлы
