Comparative analysis of magnetic and electronic properties of 2d phases of chromium tellurides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The first-principle modeling of two different quasi-two-dimensional phases based on the volume phases Cr2Te3 and CrTe3 is carried out. Structural relaxation of the obtained 2D compounds and their volumetric prototypes was performed within the framework of the density functional method and the projection plane wave method. Magnetic anisotropy in various crystallographic planes of quasi-two-dimensional structures and corresponding bulk materials has been studied. An increase in magnetic anisotropy was found during the transition from bulk phases to quasi-two-dimensional phases of Cr2Te3/CrTe3. A charge density map is constructed and the density of electronic states is found for 2D Cr2Te3 and CrTe3 materials.

作者简介

A. Kartsev

Computing Center of Far Eastern Branch of RAS; Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: karec1@gmail.com
俄罗斯联邦, Kim You Chen Str., 65, Khabarovsk, 680000; 2-nd Baumanskaya Str., 5, build.1, Moscow, 105005

A. Safronov

MIREA – Russian Technological University

Email: karec1@gmail.com
俄罗斯联邦, prosp. Vernadskogo, 78, Moscow, 119454

参考

  1. Zhang P., Xue S., Wang J. // Materials & Design. 2020. V. 192. P. 108726. https://doi.org/10.1016/j.matdes.2020.108726
  2. Zhang Z., Wang Z., Shi T. et al. // InfoMat. 2020. V. 2. №. 2. P. 261. https://doi.org/10.1002/inf2.12077
  3. Frazier A.B., Warrington R.O., Friedrich C. et al. // IEEE Trans. 1995. V. ID-42. № 5. P. 423. https://doi.org/10.1109/41.464603
  4. Charles Jr H. K. // Johns Hopkins APL Technical Digest. 2005. V. 26. №. 4. P. 402.
  5. Rohrer H.R. // Jap. J. Appl. Phys. 1993. V. 32. № 3. P. 1335.
  6. Keyes R.W. // IBM J. Research and Development. 1988. V. 32. № 1. P. 84.
  7. Гуляев Ю.В., Сандомирский В.Б., Суханов А.А., Ткач Ю.Я. // Успехи физ. наук. 1984. Т. 144. № 3. С. 475.
  8. Gong C., Zhang X. // Science. 2019. V. 363. № 6428. P. 4450. https://www.science.org/doi/10.1126/science.aav4450
  9. Kartsev A., Malkovsky S., Chibisov A. // Nanomaterials. 2021. V. 11. № 11. P. 2967. https://doi.org/10.3390/nano11112967Б
  10. Билык В.Р., Брехов К.А., Агранат М.Б., Мишина Е.Д. // Russ. Technol. J. 2023. Т. 11. № 3. С. 38. https://doi.org/10.32362/2500-316X-2023-11-3-38-4
  11. Negedu S. D., Kartsev A.I., Palit M. et al. // J. Phys. Chem. C. 2022. V. 126. № 30. P. 12545. https://doi.org/10.1021/acs.jpcc.2c02102
  12. Xiong Z., Hu C., Luo X. // Nano Lett. 2021. V. 21. № 24. P. 10486.
  13. Li R., Nie J.-H., Xianet J.-J. et al. // ACS Nano. 2022. V. 16. № 3. P. 4348.
  14. Yao J., Wang H., Yuan B. et al. // Adv. Mater. 2022. V. 34. № 23. P. 2200236.
  15. Medvedev M.G., Bushmarinov I.S., Sun J. et al. // Science. 2017. V. 355. № 6320. P. 49. https://www.science.org/doi/10.1126/science.aah5975
  16. Hafner J. // J. Computational Chem. 2008. V. 29. № 13. P. 2044. https://doi.org/10.1002/jcc.21057
  17. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982.
  18. Kartsev A. A., Augustin M., Evans R.F.L. et al. // npj Computational Mater. 2020. V. 6. № 1. P. 150. https://www.nature.com/articles/s41524-020-00416-1
  19. Momma K, Izumi F. // J. Appl. Crystallography. 2008. V. 41. № 3. P. 653. https://doi.org/10.1107/S0021889808012016
  20. Synnatschke K., Badlyan N., Wrzesińska A. et al. // Ultrasonics Sonochemistry. 2023. V. 98. P. 106528.
  21. Pramanik T., Anupam R., Rik D. et al. // J. Magn. Magn. Mater. 2017. V. 437. P. 72.
  22. Bian M., Kamenskii N., Han M. et al. // Mater. Research Lett. 2021. V. 9. № 5. P. 205.
  23. Debbichi M., Debbichi L., Lebègue S. // Phys. Lett. A. 2020. V. 384. № 27. P. 126684.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024