ТОТ-метод с формирователем импульса на основе математической функции приподнятого косинуса
- Авторы: Усенко Е.А.1
- 
							Учреждения: 
							- Институт ядерных исследований Российской академии наук
 
- Выпуск: № 1 (2024)
- Страницы: 57-63
- Раздел: ЭЛЕКТРОНИКА И РАДИОТЕХНИКА
- URL: https://rjpbr.com/0032-8162/article/view/670244
- DOI: https://doi.org/10.31857/S0032816224010085
- EDN: https://elibrary.ru/fyveka
- ID: 670244
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Описан метод преобразования заряда во временной интервал (Time Over Threshold, TOT), использующий импульсный синусный формирователь, в основе которого лежит математическая функция приподнятого косинуса (ФПК). ФПК обладает важным для ТОТ-метода свойством – формированием гладкого импульса при вариативности коэффициента сглаживания и времени отклика. При этом форма импульса ФПК не зависит от входного импульсного воздействия в заданном временном диапазоне. Таким образом, на основе ФПК удалось создать импульсный синусный формирователь с заданным временным откликом, обеспечивающим однозначную зависимость длительности ТОТ-импульса от входного заряда, а также улучшить точностные характеристики за счет оптимальной спектральной фильтрации в ФПК. Импульсный синусный формирователь на основе ФПК был успешно использован в системах считывания экспериментов HADES (ГСИ, Дармштадт, Германия) и BM&N (ОИЯИ, Дубна). Общее число каналов считывания составило более 5 тысяч, ошибка метода около 0.3%.
Полный текст
 
												
	                        Об авторах
Е. А. Усенко
Институт ядерных исследований Российской академии наук
							Автор, ответственный за переписку.
							Email: Eugueni.oussenko@cern.ch
				                					                																			                												                	Россия, 							117312, Москва, пр. 60-летия Октября, 7а						
Список литературы
- Belver D., Garzón J.A., Gil A., González-Díaz D., Koenig W., Lange S., Marínd J., Montesa N., Skott P., Traxler M., Zapata M. // Nuclear Physics B. Proceed Supplements. 2006. V. 158(1). P. 47. https://doi.org/10.1016/j.nuclphysbps.2006.07.032
- Wu Jin-Jie, Heng Yue-Kun, Sun Zhi-Jia, Wu Chong, Zhao Yu-Da, Yang Gui-An, Jiang Chun-Hua // Chinese Phys. 2008. V. 32. P. 186. https://doi.org/10.1088/1674-1137/32/3/005
- Ryosuke Ota // JPS Conf. Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018). 2019. V. 24. Р. 011012. http://dx.doi.org/10.7566/JPSCP.24.011012
- HPTDC High Performance Time to Digital Converter for HPTDC. Version 1.3. March 2004 J. Christiansen CERN/EP - MIC Version 2.2.
- Andreeva O.V., Golubeva M.B., Guber F.F., Ivashkin A.P., Krasa A., Kugler A., Kurepin A.B., Petukhov O.A., Reshetin A.I., Sadovsky A.S., Svoboda O., Sobolev Yu.G., Tlusty P., Usenko. E.A. // Instrum. Experim. Tech. 2014. V 57. P. 103. https://doi.org/10.1134/S0020441214020146
- Kuzmin N.A., Ladygin E.A., Ladygin V.P., Petukhov Yu.P., Sychkov S.Ya., Semak A.A., Ukhanov M.N., Usenko E.A. // Instrum. Meth. 2019. V. 916. P. 190. https://doi.org/10.1016/j.nima.2018.11.098
- Art Kay. Operational Amplifier Noise: Techniques and Tips for Analyzing and Reducing Noise. 1st Edition. Newnes, 2012.
- Glover I.A, Grant P. Digital communication. 3 ed. TK5103.7G58. 621.382 dc22, Printed in Great Btitain by Hanry Ling Limited, at the Dorset Press, Dorchester, DT1 1HD, 2009.
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 









