Анализ вовлеченности генов предрасположенности к ишемической болезни сердца в реализацию сигнальных и метаболических путей
- Авторы: Часовских Н.Ю.1, Шестакова Е.Е.1
-
Учреждения:
- Сибирский государственный медицинский университет
- Выпуск: Том 60, № 4 (2024)
- Страницы: 94-103
- Раздел: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://rjpbr.com/0016-6758/article/view/666953
- DOI: https://doi.org/10.31857/S0016675824040087
- EDN: https://elibrary.ru/crcouh
- ID: 666953
Цитировать
Аннотация
Ишемическая болезнь сердца (ИБС) является распространенной патологией, и ее развитие опосредуется большим числом генетических факторов, факторов внешней среды и их комбинаций. В связи с этим задачей исследования явился биоинформационный анализ вовлеченности генов предрасположенности к ИБС в реализацию сигнальных и метаболических путей. Список генов предрасположенности был составлен при помощи баз данных GWAS, DisGeNET и GeneCards. Анализ обогащения путей проводился с использованием плагина ClueGO v2.5.9 Cytoscape v3.9.1. В результате проведенного исследования установлено, что данные гены вовлечены в реализацию различных механизмов развития ИБС, включая нарушения липидного метаболизма, изменения активности элементов системы комплемента, функции эндотелия. Наследственные факторы могут оказывать влияние на процессы регуляции тромбообразования, тонус сосудов, баланс про- и антиокислительных факторов, проницаемость эндотелия, адсорбцию воды и натрия, а также процессы ангиогенеза. При этом исследуемые гены могут быть вовлечены в реализацию одного либо нескольких сигнальных/метаболических путей.
Ключевые слова
Полный текст

Об авторах
Н. Ю. Часовских
Сибирский государственный медицинский университет
Автор, ответственный за переписку.
Email: evgenika06@gmail.com
Россия, Томск, 634050
Е. Е. Шестакова
Сибирский государственный медицинский университет
Email: evgenika06@gmail.com
Россия, Томск, 634050
Список литературы
- Khan M.A., Hashim M.J., Mustafa H. et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study // Cureus. 2020. V. 12. № 7. https://doi.org/10.7759/cureus.9349
- Colditz G.A., Stampfer M.J., Willett W.C. et al. A prospective study of parental history of myocardial infarction and coronary heart disease in women // Am. J. Epidemiol. 1986. V. 123. P. 48–58. https://doi.org/10.1093/oxfordjournals.aje.a114223
- Lewis D., Wang Q., Topol E.J. Ischaemic heart disease // Nat. Encyclopedia Life Sciences. 2002. V. 10. P. 508–515.
- Shen G., Archacki S.R., Wang Q. The molecular genetics of coronary artery disease and myocardial infarction // Acute Coronary Syndrome. 2004. V. 6. P. 129–141. https://doi.org/10.1097/01.hco.0000160373.77190.f1
- Slack J., Evans K.A. The increased risk of death from ischaemic heart disease in first degree relatives of 121 men and 96 women with ischaemic heart disease // J. Med. Genet. 1966. V. 2. P. 239–257. https://doi.org/10.1136/jmg.3.4.239
- Wang Q., Pyeritz R.E. Molecular genetics of cardiovascular disease // Textbook of Cardiovascular Medicine. Edn 1. N. Y. Lippincott Williams & Wilkins, 2000. P. 1–12.
- Wang Q., Chen Q. Cardiovascular disease and congenital defects // Nat. Encyclopedia Life Sciences. 2000. V. 3. P. 646–657.
- Wang Q., Chen Q. Cardiovascular disease and congenital heart defects // Nat. Encyclopedia Human Genome. 2003. V. 1. P. 396–411.
- Wang Q. Molecular genetics of coronary artery disease // Curr. Opin. Cardiol. 2005. V. 20. № 3. P. 182–188. https://doi.org/10.1097/01.hco.0000160373.77190.f1
- MacArthur J., Bowler E., Cerezo M. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) // Nucl. Ac. Res. 2017. V. 45. P. D896–D901. https://doi.org/10.1093/nar/gkw1133
- Pinero J., Bravo A., Rosinach N.Q. et al. DisGeNET: A comprehensive platform, integrating information on human disease-associated genes and variants // Nuc. Ac. Res. 2017. V. 45. P. D833–D839. https://doi.org/10.1093/nar/gkw943
- Safran M., Dalah I., Alexander J. et al. GeneCards version 3: The human gene integrator // Database (Oxford). 2010. https://doi.org/10.1093/database/baq020
- Bindea G., Mlecnik B., Hackl H. et al. ClueGO: A Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks // Bioinformatics. 2009. V. 25. № 8. P. 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
- Kanehisa M., Goto S., Kawashima S., Nakaya A. The KEGG databases at GenomeNet // Nucl. Ac. Res. 2002. V. 30. № 1. P. 42–46. https://doi.org/10.1093/nar/30.1.42
- Fabregat A., Jupe S., Matthews L. et al. The reactome pathway knowledgebase // Nucl. Ac. Resh. 2018. V. 46. № D1. P. D649–D655. https://doi.org/10.1093/nar/gkx1132
- Tang W., Hu J., Zhang H. et al. Kappa coefficient: A popular measure of rater agreement // Shanghai Archives of Psychiatry. 2015. V. 27. № 1. P. 62–67. https://doi.org/10.11919/j.issn.1002-0829.215010
- Wilson P.W., DʹAgostino R.B., Levy D. et al. Prediction of coronary heart disease using risk factor categories // Circulation. 1998. V. 97. № 18. P. 1837–1847. https://doi.org/10.1161/01.cir.97.18.1837
- Zhang X., Sessa W.C., Fernandez-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis // Front. Cardiovasc. Med. 2018. V. 5. https://doi.org/10.3389/fcvm.2018.00130
- Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability // Physiol. Rev. 2006. V. 86. P. 279–367. https://doi.org/10.1152/physrev.00012.2005
- Rahimi N. Defenders and challengers of endothelial barrier function // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01847
- Fung K.Y.Y., Fairn G.D., Lee W.L. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities // Traffic. 2018. V. 19. P. 5–18. https://doi.org/10.1111/tra.12533
- Лапунова Л.Л. Иммунологические изменения при некоторых заболеваниях сердечно-сосудистой системы // Мед, новости. 1996. № 11. С. 3–8.
- van Hinsbergh V.W. Endothelium-role in regulation of coagulation and inflammation // Semin. Immunopathol. 2012. V. 34. № 1. P. 93–106. https://doi.org/10.1007/s00281-011-0285-5
- Rajendran P., Rengarajan T., Thangavel J. et al. The vascular endothelium and human diseases // Int. J. Biol. Sci. 2013. V. 9. P. 1057–1069. https://doi.org/10.7150/ijbs.7502.
- Kirsch J., Schneider H., Pagel J.-I. et al. Endothelial dysfunction, and a prothrombotic, proinflammatory phenotype is caused by loss of mitochondrial thioredoxin reductase in endothelium // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. P. 1891–1899. https://doi.org/10.1161/ATVBAHA.116.307843
- Lin J., He S., Sun X. et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10 // FASEB J. 2016. V. 30. P. 3216–3226. https://doi.org/10.1096/fj.201500163R
- Yau J.W., Singh K.K., Hou Y. et al. Endothelial-specific deletion of autophagy-related 7 (ATG7) attenuates arterial thrombosis in mice // J. Thorac. Cardiovasc. Surg. 2017. V. 154. P. 978–988. https://doi.org/10.1016/j.jtcvs.2017.02.058
- Wu Q., Hu Y., Jiang M. et al. Effect of autophagy regulated by sirt1/foxo1 pathway on the release of factors promoting thrombosis from vascular endothelial cells // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20174132
- Donegan R.K., Moore C.M., Hanna D.A., Reddi A.R. Handling heme: The mechanisms underlying the movement of heme within and between cells // Free Radic. Biol. Med. 2019. V. 133. P. 88–100. https://doi.org/10.1016/j.freeradbiomed.2018.08.005
- Gouveia Z., Carlos A.R., Yuan X. et al. Characterization of plasma labile heme in hemolytic conditions // FEBS J. 2017. V. 284. № 19. P. 3278–3301. https://doi.org/10.1111/febs.14192
- Sandoo A., van Zanten J.J., Metsios G.S. et al. The endothelium and its role in regulating vascular tone // Open Cardiovasc. Med. J. 2010. V. 4. P. 302–312. https://doi.org/10.2174/1874192401004010302
- Heathcote H.R., Lee M.D., Zhang X. et al. Endothelial TRPV4 channels modulate vascular tone by Ca2+ -induced Ca2+ release at inositol 1,4,5-trisphosphate receptors // Br. J. Pharmacol. 2019. V. 176. P. 3297–3317. https://doi.org/10.1111/bph.14762
- Gao W., Liu H., Yuan J. et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway // J. Cell. Mol. Med. 2016. V. 20. P. 2318–2327. https://doi.org/10.1111/jcmm.12923
- Herrero-Fernandez B., Gomez-Bris R., Somovilla-Crespo B., Gonzalez-Granado J.M. Immunobiology of atherosclerosis: A complex net of interactions // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20215293
- Marchio P., Guerra-Ojeda S., Vila J.M. et al. Targeting early atherosclerosis: A focus on oxidative stress and inflammation // Oxid. Med. Cell Longev. 2019. V. 2019. https://doi.org/10.1155/2019/8563845
- Nafisa A., Gray S.G., Cao Y. et al. Endothelial function and dysfunction: Impact of metformin // Pharmacol. Ther. 2018. V. 192. P. 150–162. https://doi.org/10.1016/j.pharmthera.2018.07.007
- Silva I.V.G., de Figueiredo R.C., Rios D.R.A. Effect of different classes of antihypertensive drugs on endothelial function and inflammation // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20143458
- Incalza M.A., DʹOria R., Natalicchio A. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases // Vascul. Pharmacol. 2018. V. 100. P. 1–19. https://doi.org/10.1016/j.vph.2017.05.005
- Guagliardo N.A., Yao J., Hu C., Barrett P.Q. Mini review: Aldosterone biosynthesis: Electrically gated for our protection // Endocrinology. 2012. V. 153. № 8. P. 3579–3586. https://doi.org/10.1210/en.2012-1339
- Palatini P., Ceolotto G., Ragazzo F. et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension // J. Hypertens. 2009. V. 27. № 8. P. 1594–1601. https://doi.org/10.1097/HJH.0b013e32832ba850
- Li L., He M., Zhou L. et al. A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response // J. Biol. Chem. 2015. V. 290. № 9. P. 5328–5340. https://doi.org/10.1074/jbc.M114.584953
- Abrahao K.P., Salinas A.G., Lovinger D.M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits // Neuron. 2017. V. 96. № 6. P. 1223–1238. https://doi.org/10.1016/j.neuron.2017.10.032
- Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer // Pflug. Arch. 2000. V. 440. P. 653–666. https://doi.org/10.1007/s004240000307
- Buonassisi V. Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures // Exp. Cell Res. 1973. V. 76. P. 363–368. https://doi.org/10.1016/0014-4827(73)90388-1
- Gerrity R.G., Richardson M., Somer J.B. et al. Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in areas of differing permeability to proteins // Am. J. Pathol. 1977. V. 89. P. 313–334.
- Baldwin A.L., Winlove C.P. Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium // J. Histochem. Cytochem. 1984. V. 32. P. 259–266. https://doi.org/10.1177/32.3.6198357
- Schnittler H.J. Structural and functional aspects of intercellula r junctions in vascular endothelium // Basic Res. Cardiol. 1998. V. 93. № 3. P. 30–39. https://doi.org/10.1007/s003950050205
- Lampugnani M.G. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology // Cold Spring Harb. Perspect. Med. 2012. V. 2. https://doi.org/10.1101/cshperspect.a006528
- Simionescu M., Simionescu N., Palade G.E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature // J. Cell Biol. 1975. V. 67. P. 863–885. https://doi.org/10.1083/jcb.67.3.863
- Dejana E., Corada M., Lampugnani M.G. Endothelial cell-to-cell junctions // FASEB J. 1995. V. 9. P. 910–918. https://doi.org/10.1096/fasebj.9.10.7615160
- Simionescu M., Antohe F. Functional ultrastructure of the vascular endothelium: changes in various pathologies // The Vascular Endothelium I. Berlin; Heidelberg: Springer. 2006. P. 41–69. https://doi.org/10.1007/3-540-32967-6_2
- Boettner B., Van Aelst L. Control of cell adhesion dynamics by Rap1 signaling // Curr. Opin. Cell Biol. 2009. V. 21. P. 684–693. https://doi.org/10.1016/j.ceb.2009.06.004
- Shah N., Meira L.B., Elliott R.M. et al. DNA damage and repair in patients with coronary artery disease: Correlation with plaque morphology using optical coherence tomography (decode study) // Cardiovasc. Revasc. Med. 2019. V. 20. № 9. P. 812–818. https://doi.org/10.1016/j.carrev.2019.04.028
- Melincovici C.S., Boşca A.B., Şuşman S. et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis // Rom. J. Morphol. Embryol. 2018. V. 59. № 2. P. 455–467.
- Adams J.C., Tucker R.P. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development // Dev. Dyn. 2000. V. 218. № 2. P. 280–299. https://doi.org/10.1002/(SICI)1097-0177(200006) 218:2<280::AID-DVDY4>3.0.CO;2-0
Дополнительные файлы
