ON THE POSSIBILITY OF CREATING HEAT-RESISTANT ALUMINUM DEFORMABLE ALLOYS BASED ON THE Al–Cu–Mn–Ni SYSTEM WITHOUT THE USE OF HARDENING HEAT TREATMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The phase composition of ingots and hot-rolled sheets of alloys in the Al–Cu–Mn–Ni system, containing 6–8% Cu, 2% Mn, and up to 4% Ni (weight percent), has been analyzed. A structure for the phase diagram in the aluminum region has been proposed, which suggests that in the solid state, there are three fourphase regions that involve a solid solution based on aluminum and different intermetallic compounds. The possibility of creating heat-resistant deformable aluminum alloys, whose structure consists of an aluminum matrix with Al20Cu2Mn3 dispersoids and Al3(Cu,Ni)2 eutectic phases, has been established.

About the authors

Nikolay Aleksandrovich Belov

National University of Science and Technology MISiS, Department of Metal Forming

Email: nikolay-belov@yandex.ru
Scopus Author ID: 7006178236

Доктор технических наук, главный научный сотрудник кафедры обработки металлов давлением

Russian Federation, Moscow, 119049

Kirill Andreevich Tsydenov

National University of Science and Technology MISiS, Department of Metal Forming

Author for correspondence.
Email: kirillcydenov@yandex.ru
Scopus Author ID: 57211963905

Кандидат технических наук, инженер научного проекта кафедры обработки металлов давлением

Russian Federation, Moscow, 119049

Stanislav Olegovich Cherkasov

National University of Science and Technology MISiS

Email: ch3rkasov@gmail.com
Scopus Author ID: 57216150737

Кандидат технических наук, инженер научного проекта кафедры обработки металлов давлением

Russian Federation, Moscow, 119049

References

  1. Polmear I., StJohn D., Nie J.F., Qian M. Physical metallurgy of aluminium alloys // In: Light Alloys. 5th ed. London: Elsevier, 2017. P. 31–107.
  2. Ashkenazi D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives // Technol. Forecast. Soc. Change. 2019. Vol. 143. P. 101–113. DOI: https://doi.org/10.1016/j.techfore.2019.03.011.
  3. Pedneault J. et al. Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways // J. Ind. Ecol. 2022. Vol. 26, № 5. P. 1728–1746. DOI: https://doi.org/10.1111/jiec.13321.
  4. Sivanur K., Umananda K. V., Pai D. Advanced materials used in automotive industry-a review. 2021. P. 020032. DOI: https://doi.org/10.1063/5.0036149.
  5. Belov N. A. [et al.]. Piston Silumins / N. A. Belov, V. D. Belov, S. V. Savchenko, M. E. Samoshina, V. A. Chernov [et al.], edited by N. A. Belov, Moscow: Ore and Metals, 2011. 246 p. ISBN: 978-5-98191-059-3.
  6. Cai Q. et al. A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications // Scr. Mater. 2023. Vol. 237. P. 115707. DOIhttps://doi.org/10.1016/j.scriptamat.2023.115707.
  7. Mirzaee-Moghadam M. et al. Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds // Mater. Chem. Phys. 2022. Vol. 279. P. 125758. DOIhttps://doi.org/10.1016/j.matchemphys.2022.125758.
  8. Govind V. et al. Fretting Wear Behavior of Al-Si-Mg-Ni Hypoeutectic Alloy with Varying Solutionizing Time // Silicon. 2023. Vol. 15, № 10. P. 4193–4206. DOI: https://doi.org/10.1007/s12633-023-02342-5.
  9. Sha M. et al. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe // Metall. Mater. Trans. A. 2013. Vol. 44, № 13. P. 5642–5652. DOI: https://doi.org/10.1007/s11661-013-1937-y.
  10. Cai Q. et al. Die-cast multicomponent near-eutectic and hypoeutectic Al–Si–Ni–Fe–Mn alloys: Microstructures and mechanical properties // Mater. Sci. Eng. A. 2023. Vol. 872. P. 144977. DOI: http://dx.doi.org/10.1016/j.msea.2023.144977.
  11. N.A. Belov, A.I. Kovalev, D.A. Vinnik, K.A. Tsydenov. Comparative analysis of phase composition and heat resistance of Al-Si piston alloy and experimental alloy Al4Cu2Mn0,5Ca0,2Zr (wt. %). Metallurgist. 2024. doi: 10.3390/ma12162506
  12. Kaiser M.S. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al–12Si–1Mg–1Cu Piston Alloy // J. Inst. Eng. Ser. D. 2018. Vol. 99, № 1. P. 109–114. DOI: http://dx.doi.org/10.1007/s40033-017-0140-5.
  13. LIN G. et al. Effects of La–Ce addition on microstructure and mechanical properties of Al–18Si–4Cu–0.5Mg alloy // Trans. Nonferrous Met. Soc. China. 2019. Vol. 29, № 8. P. 1592–1600. DOI: http://dx.doi.org/10.1016/S1003-6326(19)65066-1.
  14. Ahmad R. et al. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition // Int. J. Miner. Metall. Mater. 2017. Vol. 24, № 1. P. 91–101. DOI: http://dx.doi.org/10.1007/s12613-017-1382-9.
  15. Belov N.A. et al. Comparative analysis of structure evolution and thermal stability of сommercial AA2219 and model Al-2 wt%Mn-2 wt%Cu cold rolled alloys // J. Alloys Compd. 2021. Vol. 864. P. 158823. DOI: https://doi.org/10.1016/j.jallcom.2021.158823.
  16. Belov N. et al. Simultaneous Increase of Electrical Conductivity and Hardness of Al–1.5 wt.% Mn Alloy by Addition of 1.5 wt.% Cu and 0.5 wt.% Zr // Metals (Basel). 2019. Vol. 9, № 12. P. 1246. DOI: https://doi.org/10.3390/met9121246.
  17. N.A. Belov, P.K. Shurkin, N.O. Korotkova, S.O. Cherkasov. The effect of heat treatment on the structure and heat resistance of cold-rolled sheets of Al–Cu–Mn alloys with different copper and manganese ratios. Non-ferrous metals. 2021. No. 9. pp. 80–86. doi: 10.17580/tsm.2021.09.09.
  18. Belov N.A., Korotkova N.O., Cherkasov S.O., Yakovleva A.O. Effect of iron and silicon concentrations on the phase composition and microstructure of wrought alloy Al–2 wt.% Mn–2 wt.% Cu. The Physics of Metals and Metallography, 2021, Vol.122, No. 11, pp. 1095–1102.
  19. Dar S.M., Liao H. Creep behavior of heat resistant Al–Cu–Mn alloys strengthened by fine (θ′) and coarse (Al20Cu2Mn3) second phase particles // Mater. Sci. Eng. A. 2019. Vol. 763. P. 138062. DOI: http://dx.doi.org/10.1016/j.msea.2019.138062
  20. N.A. Belov, A.N. Alabin, Energy efficient technology for Al–Cu–Mn–Zr sheet alloys, Mater. Sci. Forum 765 (2013) 13-17.
  21. Dai H. et al. Microstructure and high-temperature mechanical properties of new-type heat-resisting aluminum alloy Al6.5Cu2Ni0.5Zr0.3Ti0.25V under the T7 condition // Mater. Lett. 2023. Vol. 332. P. 133503. DOI: http://dx.doi.org/10.1016/j.matlet.2022.133503.
  22. Belov N. A., Akopian T. K., Naumova E. A. Eutectic alloys based on aluminium: new alloying systems / N. A. Belov, T. K. Akopian, E. A. Naumova, Moscow: Ore and Metals, 2016. 256 p. ISBN: 978-5-98191-083-8/
  23. R. Ding, J. Deng, X. Liu, Y. Wu, Zh. Geng, D. Li, T. Zhang, Ch. Chen, K. Zhou, Enhanced mechanical properties and thermal stability in additively manufactured Al-Ni alloy by Sc addition, J. Alloys Compd. 934 (2023) 167894https://doi.org/10.1016/j.jallcom.2022.167894
  24. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, 1976
  25. Belov N.A. Phase composition of industrial and promising aluminium alloys. Moscow: MISiS Publishing House, 2010, 511 p.

Supplementary files

Supplementary Files
Action
1. JATS XML