Analysis of coverage of Alu repeats by aligned genomic reads
- 作者: Tamazian G.S1, Kanapin A.A1, Samsonova A.A1
- 
							隶属关系: 
							- Institute of Translational Biomedicine, St. Petersburg State University
 
- 期: 卷 68, 编号 3 (2023)
- 页面: 496-500
- 栏目: Articles
- URL: https://rjpbr.com/0006-3029/article/view/673484
- DOI: https://doi.org/10.31857/S0006302923030109
- EDN: https://elibrary.ru/FRPXRZ
- ID: 673484
如何引用文章
详细
Alu repeats occupy a notable part of the human genome and greatly affect processes related to genome integrity maintenance. One of the basic methods for studying variation in a genome, including Alu repeats is genome sequencing followed by mapping the sequenced reads to a reference genome sequence. The key feature of the read alignment is the depth of reference genome region coverage by mapped reads. In this paper, a new method is proposed for analyzing the coverage of Alu repeats and their flanking regions by whole-genome sequencing reads and the distribution of mean coverage in two aforementioned region types is explored.
			                作者简介
G. Tamazian
Institute of Translational Biomedicine, St. Petersburg State UniversitySt. Petersburg, Russia
A. Kanapin
Institute of Translational Biomedicine, St. Petersburg State UniversitySt. Petersburg, Russia
A. Samsonova
Institute of Translational Biomedicine, St. Petersburg State University
														Email: a.samsonova@spbu.ru
				                					                																			                												                								St. Petersburg, Russia						
参考
- M. A. Batzer and P. L. Deininger, Nat. Rev. Genet., 3 (5), 370 (2002).
- F. Hormozdiari, M. K. Konkel, J. Prado-Martinez. et al., Proc. Natl. Acad. Sci. USA, 110 (33), 13457 (2013).
- E. S. Lander, L. M. Linton, B. Birren, et al., Nature, 409 (6822), 860 (2001).
- J. C. Venter, M. D. Adams, E. W. Myers, et al., Science, 291 (5507), 1304 (2001).
- F. C. Chen, Y. Z. Chen, and T. J. Chuang, Bioinformatics, 25 (11), 1419 (2009).
- J. M. Chen, E. Masson, C. Le Marechal, et al., Cytogenet Genome Res, 123 (1-4), 102 (2008).
- P. Deininger, Genome Biol., 12 (12), 236 (2011).
- L. M. Payer, J. P. Steranka, W. R. Yang, et al., Proc. Natl. Acad. Sci. USA, 114 (20), E3984 (2017).
- S. Shen, L. Lin, J. J. Cai, et al., Proc. Natl. Acad. Sci. USA, 108 (7), 2837 (2011).
- I. Vorechovsky, Hum, Genet., 127 (2), 135 (2010).
- S. Pavlov, V. V. Gursky, M. Samsonova, et al., Life (Basel), 11 (11), 1209 (2021). doi: 10.3390/life11111209
- A. Smit, R. Hubley, and P. Green, RepeatMasker Open-4.0 (accessed 03/18/2022).
- H. Mao and H. Wang, Bioinformatics, 33 (5), 743 (2017).
- S. E. Staton and J. M. Burke, Bioinformatics, 31 (11), 1827 (2015).
- H. Li and R. Durbin, Bioinformatics, 25 (14), 1754 (2009).
- S. Fairley, E. Lowy-Gallego, E. Perry, et al., Nucl. Acids Res., 48 (D1), D941 (2020).
- H. Li, B. Handsaker, A. Wysoker, et al., Bioinformatics, 25 (16), 2078 (2009).
- J. K. Bonfield, J. Marshall, P. Danecek, et al., Gigascience, 10 (2), giab007 (2021). doi: 10.1093/giga-science/giab007
- G. Tamazian, N. Cherkasov, A. Kanapin, et al., in BGRS/SB-2022 (Novosibirsk, Russia, 2022), pp. 11211122.
- R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
- L. Scrucca, M. Fop, T. B. Murphy, et al., The R Journal, 8 (1), 289 (2016).
- Broad Institute, Picard: A set of command line tools for manipulating high-throughput sequencing data (2022).
- A. R. Quinlan and I. M. Hall, Bioinformatics, 26 (6), 841 (2010).
- P. Danecek, J. K. Bonfield, J. Liddle, et al., Gigascience, 10 (2), giab008 (2021). doi: 10.1093/giga-science/giab008
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					