A method for estimating the number of regolith particles in a dust cloud in a discharge initiated by gyrotron radiation
- Autores: Sokolov A.S.1, Gayanova Т.E.1, Kozak А.К.1, Malakhov D.V.1, Nugaev I.R.1, Kharlachev D.Е.1, Stepakhin V.D.1
- 
							Afiliações: 
							- Prokhorov General Physics Institute of the Russian Academy of Sciences
 
- Edição: Volume 101, Nº 4 (2024)
- Páginas: 348-354
- Seção: Articles
- URL: https://rjpbr.com/0004-6299/article/view/647608
- DOI: https://doi.org/10.31857/S0004629924040053
- EDN: https://elibrary.ru/KFPXTF
- ID: 647608
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The article proposes a new method for estimating the number of particles in experiments on modeling the interaction of cosmic and lunar dust with the surface of spacecraft. The experiments are based on the creation of a dusty plasma cloud, when exposed to radiation from a powerful pulsed gyrotron on a substance simulating cosmic or lunar dust. This approach was tested using a lunar regolith simulator. The dynamics of particles in dust clouds obtained as a result of microwave discharge is analyzed using the ImageJ program.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Sokolov
Prokhorov General Physics Institute of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Т. Gayanova
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
А. Kozak
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Malakhov
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Nugaev
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Kharlachev
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Stepakhin
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: dmc63@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- T. E. Gayanova, E. V. Voronova, S. V. Kuznetsov, E. A. Obraztsova, N.N. Skvortsova, A. S. Sokolov, I. R. Nugaev and V.D. Stepakhin, High Energy Chem. 57, 1, 53 (2023).
- N. S. Akhmadullina, N. N. Skvortsova, E. A. Obraztsova, V. D. Stepakhin et al., Chem. Phys. 516, 63 (2019).
- S. I. Popel, L. M. Zelenyi, A. P. Golub and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).
- И. А. Кузнецов, А. В. Захаров, Л. М. Зеленый, С. И. Попель и др., Астрон. журн. 100, 1, 41 (2023).
- S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, Plasma Phys. Rep. 46 (3), 265 (2020).
- J. Williams, Journal of Plasma Physics 82(03) (2016).
- Y. Zeng, Zh. Ma, Y. Feng, Review of Scientific Instruments, 93 (3) (2022).
- Н. Н. Скворцова, В. Д. Степахин, Д. В. Малахов, Л. В. Колик, Е. М. Кончеков, Е. А. Образцова, А. С. Соколов, А. А. Сорокин, Н. К. Харчев и О. Н. Шишилов, Патент №2727958 Российская Федерация, рег. 28 июля 2020 г.
- Г. М. Батанов, Н. К. Бережецкая, В. Д. Борзосеков, Л. В. Колики др., Успехи прикладной физики 1, 5, 564 (2013).
- А. С. Соколов, Д. В. Малахов и Н.Н. Скворцова, Инженерная физика 11, 3 (2018).
- М. В. Тригуб, Д. В. Малахов, В. Д. Степахин, Г. С. Евтушенко, Д. А. Балабанов и Н. Н. Скворцова, Оптика атмосферы и океана 33, 3, 199 (2020).
- А. А. Летунов, Н. Н. Скворцова, И. Г. Рябикина, Г. М. Батанов, и др., Инженерная физика 10, 36 (2013).
- E.V. Voronova, A. V. Knyazev, A. A. Letunov, V. P. Logvinenko, N. N. Skvortsova, and V. D. Stepakhin, Physics of Atomic Nuclei. 84, 1761 (2021).
- ImageJ Independent Platform, https://imagej.nih.gov/ij/
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








