INFLUENCE OF AMBIENT CONDITIONS AND DUST PARAMETERS ON THE THERMAL DESORPTION RATE OF ICE MANTLE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, we present the calculations of dust temperature and thermal desorption rates in cold molecular clouds with taking into account the stochasting heating of dust grains by ultraviolet (UV) radiation field and cosmic rays (CRs) including secondary electrons. The calculations were carried out for dust grains with radius of their core within the range from 0.005 to 0.25 ?m. Silicate and graphite grains covered by ice mantle (H2O) with thickness corresponding to the volume proportions Sil/Gra : H2O = 3:1 and 1:1 were considered. For each dust composition, the closest physical properties (heat capacity, absorption cross sections, stopping power) were used. Thermal desorption rates vary up to several orders depending on dust size and up to factor of 2 depending on the position in a cloud and dust core material. The obtained thermal desorption rates differ from the estimates available in literature up to 2 orders depending on dust size and outer conditions.

About the authors

M. S. Murga

Institute of Astronomy of the Russian Academy of Sciences; Research Laboratory for Astrochemistry, Ural Federal University

Email: murga@inasan.ru
Moscow, Russia; Yekaterinburg, Russia

E. E. Sivkova

Sterrenkundig Observatorium, Universiteit Gent

Gent, Belgium

A. I. Vasyunin

Research Laboratory for Astrochemistry, Ural Federal University

Email: anton.vasyunin@gmail.com
Yekaterinburg, Russia

References

  1. S.S. Prasad and S.P. Tarafdar, Astrophys. J. 267, 603 (1983).
  2. C.J. Shen, J.M. Greenberg, W.A. Schutte, and E.F. van Dishoeck, Astron. and Astrophys. 415, 203 (2004).
  3. H.J. Habing, Bull. Astron. Inst. Netherlands 19, 421 (1968).
  4. T.I. Hasegawa and E. Herbst, Monthly Not. Roy. Astron. Soc. 261, 83 (1993).
  5. B. Zhao, P. Caselli, and Z.-Y. Li, Monthly Not. Roy. Astron. Soc. 478(2), 2723 (2018).
  6. E. Herbst and H.M. Cuppen, Proc. Nat. Acad. Sci. 103(33), 12257 (2006).
  7. W. Iqbal and V. Wakelam, Astron. and Astrophys. 615, id. A20 (2018).
  8. O. Sipila, B. Zhao, and P. Caselli, Astron. and Astrophys. 640, id. A94 (2020).
  9. K. Silsbee, P. Caselli, and A.V. Ivlev, Monthly Not. Roy. Astron. Soc. 507(4), 6205 (2021).
  10. P. Guhathakurta and B.T. Draine, Astrophys. J. 345, 230 (1989).
  11. Y.N. Pavlyuchenkov, D.S. Wiebe, V.V. Akimkin, M.S. Khramtsova, and Th. Henning, Monthly Not. Roy. Astron. Soc. 421(3), 2430 (2012).
  12. A.P. Jones, M. Kohler, N. Ysard, M. Bocchio, and L. Verstraete, Astron. and Astrophys. 602, id. A46 (2017).
  13. A. Li and B.T. Draine, Astrophys. J. Letters 760(2), id. L35 (2012).
  14. A. Leger, M. Jura, and A. Omont, Astron. and Astrophys. 144(1), 147 (1985).
  15. C.N. Shingledecker, S. Incerti, A. Ivlev, D. Emfietzoglou, I. Kyriakou, A. Vasyunin, and P. Caselli, Astrophys. J. 904(2), 189 (2020).
  16. J. Biersack and L. Haggmark, Nuclear Instruments and Methods 174(1), 257 (1980).
  17. J.F. Ziegler and J.P. Biersack, The Stopping and Range of Ions in Matter, in: Treatise on HeavyIon Science: V. 6, edited by D.A. Bromley (Boston, MA: Springer US, 1985), p. 93.
  18. R. Pratt, H. Tseng, C. Lee, L. Kissel, C. MacCallum, and M. Riley, Atomic Data and Nuclear Data Tables 20(2), 175 (1977).
  19. S.M. Seltzer and M.J. Berger, Nuclear Instruments and Methods in Physics Research B 12(1), 95 (1985).
  20. D.C. Joy, S. Luo, H.P. Gauvin, Raynold, and N. Evans, Scanning Microscopy 10(3), 653 (1996).
  21. M. Padovani, A.V. Ivlev, D. Galli, and P. Caselli, Astron. and Astrophys. 614, id. A111 (2018).
  22. A.V. Ivlev, K. Silsbee, M. Padovani, and D. Galli, Astrophys. J. 909(2), 107 (2021).
  23. T. Guver and F. Ozel, Monthly Not. Roy. Astron. Soc. 400(4), 2050 (2009).
  24. J.S. Mathis, W. Rumpl, and K.H. Nordsieck, Astrophys. J. 217, 425 (1977).
  25. V. Wakelam, J.C. Loison, R. Mereau, and M. Ruaud, Molecular Astrophys. 6, 22 (2017).
  26. B.T. Draine, Astrophys. J. 598(2), 1017 (2003).
  27. S.G. Warren and R.E. Brandt, J. Geophys. Res. Atmospheres 113(D14), id. D14220 (2008).
  28. M. Sugisaki, H. Suga, and S. Seki, Bull. Chemical Soc. Japan 41(11), 2591 (2006).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences