Mathematical Modeling of Hydrodynamic Instability of the Flows in Combustion Chambers Liquid Propellant Rocket Engines

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The phenomenon of hydrodynamic instability of flows in combustion chambers of liquid-propellant rocket engines and its influence on occurrence and development of high-frequency oscillations of working process parameters are considered. Based on the numerical solution of two model problems, it is shown that hydrodynamic instability of the flow can directly cause high-frequency oscillations in the engine chamber. The first of the above tasks corresponds to uniform blowing of combustion products into the chamber through the section. In this formulation, the expected pulsations are not observed, and the flow parameters at the steady-state mode correspond to the conditions of thermodynamic equilibrium, which can be taken as verification of the proposed mathematical model. Second task corresponds to slotted injection of combustion products into chamber simulating operation of injector head with concentric rows of mixing elements arranged on it. The presence of slotted injection leads to the emergence of hydrodynamic instability of the flow with the formation of intense vortex zones in the working volume of the combustion chamber and the subsonic part of the nozzle. This process is accompanied by the appearance of high-frequency oscillations in the values of the flow parameters. Calculation results are given and the obtained numerical solution is tested.

Авторлар туралы

D. Borisov

JSC SSC “Research Center named after M.V. Keldysh”

Хат алмасуға жауапты Автор.
Email: borisovdm62@mail.ru
Ресей, Moscow

V. Mironov

JSC SSC “Research Center named after M.V. Keldysh”

Email: borisovdm62@mail.ru
Ресей, Moscow

A. Rudenko

JSC SSC “Research Center named after M.V. Keldysh”

Email: borisovdm62@mail.ru
Ресей, Moscow

Y. Shuraev

JSC SSC “Research Center named after M.V. Keldysh”

Email: borisovdm62@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Неустойчивость горения в ЖРД / под ред. Д. Харрье и Ф.Г. Рирдона. М., 1975.
  2. Лебединский Е.В., Калмыков Г.П., Мосолов С.В. и др., под ред. академика РАН Коротеева А.С. Рабочие процессы в жидкостном ракетном двигателе и их моделирование. М.: Машиностроение, 2008.
  3. Jianxiu Qin and Huiqiang Zhang. Numerical analysis of self-excited combustion instabilities in a small MMH/NTO liquid rocket engine. Hindawi, International Journal of Aerospace Engineering, Vol. 2020, Article ID 3493214, 17 pages, https://doi.org/10.1155/2020/3493214
  4. Urbano A., Selle L., Staffelbach G., Cuenot B., Schmitt T., Ducruix S., Candel S. Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector Liquid Rocket Engine. Combustion and Flame, Elsevier, 2016, 169, pp. 129–140. 10.1016/j.combustflame.2016.03.020. hal-01320509
  5. Борисов Д.М., Шураев Ю.А., Миронов В.В. Метод расчета сжимаемых вязких течений в каналах энергодвигательных установок со сложной геометрией проточного тракта // Изв. РАН. Энергетика, 2015. № 5. С. 152–158.
  6. Трусов Б.Г. Моделирование химических и фазовых равновесий при высоких температурах (Астра-4/рс). М.: Изд. МВТУ им. Э. Баумана, 1991.
  7. Борисов Д.М., Миронов В.В., Шураев Ю.А. Термохимическое моделирование неизоэнтропических процессов в камерах сгорания и соплах ракетных двигателей. // Изв. РАН. Энергетика, 2020. № 1. С. 21–39.
  8. Ковеня В.М., Яненко Н.Н. Метод расщепления в задачах газовой динамики. Издательство “Наука”. Сибирское отделение. Новосибирск, 1981 год.
  9. Марчук Г.И. Методы расщепления. Москва. “Наука”. Главная редакция физико-математической литературы, 1988 год.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Lines of a curved coordinate system.

Жүктеу (125KB)
3. 2. Distribution of the static pressure along the axis of the chamber and the nozzle of the engine at different time points: 1 – t = 0.662; 2 – t = 2.297; 3 – t = 3.659.

Жүктеу (73KB)
4. 3. The dependence of the static pressure in the critical section on the nozzle axis on time.

Жүктеу (66KB)
5. Fig. 4. Steady-state flow lines.

Жүктеу (139KB)
6. Fig. 5. Longitudinal distribution of static pressure on the nozzle wall.

Жүктеу (74KB)
7. Fig. 6. Distribution of static pressure along the nozzle axis.

Жүктеу (98KB)
8. 7. Distribution of the static temperature along the nozzle axis.

Жүктеу (86KB)
9. 8. Distribution of the mass concentration of water along the axis of the nozzle.

Жүктеу (79KB)
10. 9. Current lines in the combustion chamber and the nozzle of the engine at different time points.

Жүктеу (520KB)
11. 10. The dependence of the static pressure in the critical section on the nozzle axis on time.

Жүктеу (93KB)

© Российская академия наук, 2025